Crafting Our Future NASA Langley Research Center

Delivering for Today...

Preparing for Tomorrow.

Well-population

Langley Research Center

Infrastructure/Facilities

- 788 acres, 241 Buildings
- \$2.7 B replacement value

- ~\$725M Budget (2008 President's Budget)
- ~\$710M NASA budget
 - ~\$15M External business
- ~3,500 Workforce (+ ~ 250 students)
- ~1,900 Civil Servants
- ~1,600 Contractors

2006 Economic Impact of NASA Operations in Virginia (Langley and Wallops) and Partners

Langley Portfolio

- Langley contributes to all aspects of NASA's Mission
 - Exploration
 - Space Operations
 - Science
 - Aeronautics
- Langley also collaborates with others on critical aerospace R&T

Helping Fly The Shuttle Safely

External Tank PAL Ramps

IR Camera Inspection System

On-orbit Repair Technologies

Wing Leading Edge Impact Detection System

Mission Management Support

Aerothermodynamic Modeling

HYTHIRM

STS-119 Success Criteria:

To obtain spatially resolved infrared imagery that will provide a quantified surface temperature map of the Shuttle during hypersonic re-entry

Shuttle as target of opportunity to demonstrate thermal imaging capability with existing technologies during Shuttle (STS-119) boundary layer transition flight experiment

Onward With Exploration

Materials Studies

Landing System Drop Tests

Lunar Architecture & Concepts

Flight Test Articles

Ares I Aero Characterization

Habitat Structures & Materials

Launch Abort System

Entry, Descent & Landing Systems

Mars Architecture

ARES 1X Becomes A Reality

Understanding Our Planet

CLARREO

Advanced Instruments

Space-based Missions

CALIPSO

A-Train

Algorithm Development

Field Missions

CERES - Radiation

Applications - Air Quality

Climate Absolute Radiance & Refractivity Observatory

Continuing To Shape The Future Of Aeronautics

Hypersonics

Supersonics

Fixed-Wing

Rotary-Wing

Integrated Vehicle Integrated Intelligent Health Management Flight Deck

Aircraft Aging and Durability

Integrated Resilient Aircraft Control

Airportal

Airspace

Test Facilities

Advanced Aircraft

Next Gen Fixed Wing Aircraft

Reducing the weight of advanced composite designs

Challenges

Creating complex
Physics-based tools
to design new aircraft
configurations

Variable Area Fan Nozzle

Developing high-temperature smart materials for noise reduction of nozzle fan

Developing high temperature materials to enable high OPR engine

Integrating
ultra-high
bypass engines

High temp disk

Revolutionary Technical Challenges

NASA Langley Research Center